Focus on Quadratic functions and parabolas :

1/ Introduction :

The graphs of all quadratic functions are parabolas. The parabola is one of the conic sections.

Conic sections are curves which can be obtained by cutting a cone with a plane. The Ancient Greek mathematicians were fascinated by conic sections.

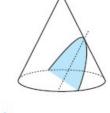
You may like to find the conic sections for yourself by cutting an icecream cone. Cutting parallel to the side produces a parabola, i.e.,

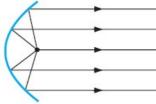
There are many examples of parabolas in every day life. The name parabola comes from the Greek word for **thrown** because when an object is thrown its path makes a parabolic shape.

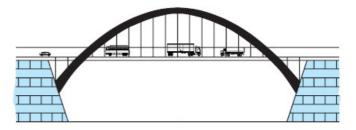
Parabolic mirrors are used in car headlights, heaters, radar discs and radio telescopes because of their special geometric properties.

Alongside is a single span parabolic bridge.

Some archways also have parabolic shape.







2/ Review of Terminology

The equation of a quadratic function is given by $y = ax^2 + bx + c$, where $a \neq 0$.

The graph of a quadratic function is called a **parabola**. The point where the graph 'turns' is called the **vertex**.

If the graph opens upward, the y coordinate of the vertex is the **minimum** (concave up), while if the graph opens downward, the y-coordinate of the vertex is the **maximum** (concave down).

The vertical line that passes through the vertex is called the **axis of symmetry**. All parabolas are symmetrical about the axis of symmetry.

The point where the graph crosses the y-axis is the y-intercept.

zero minimum vertex

The points (if they exist) where the graph crosses the x-axis should be called the x-intercepts, but more commonly are called the zeros of the function.

3/ Sketching a parabola

If the coefficient of x^2 :	•	is positive, the graph is concave up	\bigtriangledown	a > 0
	•	is negative, the graph is concave down	$ \land $	a < 0.

Quadratic form, $a \neq 0$	Graph	Facts
• $y = a(x - \alpha)(x - \beta)$ α, β are real	$\alpha \qquad \beta \qquad x = \frac{\alpha + \beta}{2}$	x-intercepts are α and β axis of symmetry is $x = \frac{\alpha + \beta}{2}$
• $y = a(x - \alpha)^2$ α is real	$x = \alpha$ $V(\alpha, 0)$	touches x-axis at α vertex is $(\alpha, 0)$ axis of symmetry is $x = \alpha$
• $y = a(x-h)^2 + k$	x = h V (h, k)	vertex is (h, k) axis of symmetry is $x = h$

4/ Algebra and Calculus

• To solve the equation f(x) = 0, find the discriminant : $\Delta = b^2 - 4ac$:

If $\frac{b^2 - 4ac > 0}{then the equation f(x)} = 0$ has two distinct roots (or zeroes or x-intercepts): $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ and $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$ and $f(x) = a(x - x_1)(x - x_2)$ (factorized form)

If $b^2 - 4ac = 0$

then the equation f(x) = 0 has only one root $x_0 = \frac{-b}{2a}$ and $f(x) = a(x-x_0)^2$

If $\underline{b^2 - 4ac < 0}$ then the equation f(x) = 0 has no (real) roots and can't be factorized.

• <u>To find Maximum or minimum values :</u>

derivative of a quadratic function f'(x)=2ax+b