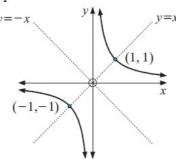
Focus on Reciprocal Functions

 $x \mapsto \frac{1}{x}$, i.e., $f(x) = \frac{1}{x}$ is defined as the **reciprocal function**.

It has graph:



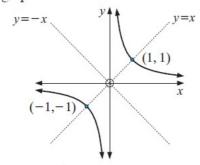
• $f(x) = \frac{1}{x}$ is asymptotic to the x-axis and to the y-axis. [The graph gets closer to the axes as it gets further from the origin.] Notice that:

- $f(x) = \frac{1}{x}$ is meaningless when x = 0
- The graph of $f(x) = \frac{1}{x}$ exists in the first and third quadrants only.
- $f(x) = \frac{1}{x}$ is symmetric about y = x and y = -x
- as $x \to \infty$, $f(x) \to 0$ (from above) as $x \to -\infty$, $f(x) \to 0$ (from below) as $x \to 0$ (from right), $y \to \infty$ as $x \to 0$ (from left), $y \to -\infty$ \to reads approaches or tends to

Focus on Reciprocal Functions

 $x \mapsto \frac{1}{x}$, i.e., $f(x) = \frac{1}{x}$ is defined as the **reciprocal function**.

It has graph:



• $f(x) = \frac{1}{x}$ is asymptotic to the x-axis and to the y-axis. [The graph gets closer to the axes as it gets further from the origin.]

Notice that:

- $f(x) = \frac{1}{x}$ is meaningless when x = 0
- The graph of $f(x) = \frac{1}{x}$ exists in the first and third quadrants only.
- $f(x) = \frac{1}{x}$ is symmetric about y = x and y = -x
- as $x \to \infty$, $f(x) \to 0$ (from above)
 - as $x \to -\infty$, $f(x) \to 0$ (from below)
 - as $x \to 0$ (from right), $y \to \infty$
 - as $x \to 0$ (from left), $y \to -\infty$
 - → reads approaches or tends to