Focus on Reciprocal Functions

$x \mapsto \frac{1}{x}$, i.e., $f(x)=\frac{1}{x}$ is defined as the reciprocal function.

It has graph:

- $f(x)=\frac{1}{x}$ is asymptotic to the x-axis and to the y-axis. [The graph gets closer to the axes as it gets further from the origin.]

Notice that:

- $f(x)=\frac{1}{x}$ is meaningless when $x=0$
- The graph of $f(x)=\frac{1}{x}$ exists in the first and third quadrants only.
- $f(x)=\frac{1}{x}$ is symmetric about $y=x$ and $y=-x$
- as $x \rightarrow \infty, \quad f(x) \rightarrow 0$ (from above)
as $x \rightarrow-\infty, \quad f(x) \rightarrow 0$ (from below)
as $x \rightarrow 0$ (from right), $\quad y \rightarrow \infty$
as $x \rightarrow 0$ (from left), $\quad y \rightarrow-\infty$
\rightarrow reads approaches or tends to

Focus on Reciprocal Functions

$x \mapsto \frac{1}{x}$, i.e., $f(x)=\frac{1}{x}$ is defined as the reciprocal function.

It has graph:

- $f(x)=\frac{1}{x}$ is asymptotic
to the x-axis and to the y-axis.
[The graph gets closer to the axes as it gets further from the origin.]

Notice that:

- $f(x)=\frac{1}{x}$ is meaningless when $x=0$
- The graph of $f(x)=\frac{1}{x}$ exists in the first and third quadrants only.
- $f(x)=\frac{1}{x}$ is symmetric about $y=x$ and $y=-x$
- as $x \rightarrow \infty, \quad f(x) \rightarrow 0$ (from above)
as $x \rightarrow-\infty, \quad f(x) \rightarrow 0$ (from below)
as $x \rightarrow 0$ (from right), $\quad y \rightarrow \infty$
as $x \rightarrow 0$ (from left), $y \rightarrow-\infty$
\rightarrow reads approaches or tends to

